LECTURE 4

Signal Detection & Statistics

Introduction

Signal detection is fundamental to astronomy

Instruments operate near sensitivity limits
Detections of individual photons
Faint sources are hard to distinguish from noise

Signal detection techniques depend on

- Wavelength
- Instrument → physical process of detection photons
- Source intensity → number of photons
- Prior knowledge of the source

Need to understand the statistical properties of the data

Astronomical Images

- Contain a hierarchy of sources
 - o Star
 - Cluster
 - Galaxy
 - o Group of Galaxies
- Contain sources with different shapes
 - Point sources
 - Stars
 - Nucleated galaxies
 - Extended sources
 - Galaxies
 - Nebulae
 - Blended sources
 - Sources too close to separate

Some Basic Statistical Concepts

Mean

The **mean** is the sum of the data divided by the number of data points.

$$\langle x \rangle = \sum_{i=1,N} x_i$$

Advantages:

- o Simple to compute
- Works well for symmetric distributions

Disadvantages:

- Sensitive to outliers
- Not good for multi-peaked distributions

Median

The **median** is the middle value of a sorted set of data. For example:

The data set {1,6,3,57,2,4,5} sorts to {1,2,3,4,5,6,57}. This middle value is 4, so the median is 4.

Advantages

o Insensitive to outliers

Disadvantages

o Computationally intensive

Mode

The **Mode** is the most common value in a data set. It is the peak of the probability distribution. For example:

The data set {1,2,3,4,2,3,4,3,4,4} has one 1, two 2s, three 3s, and four 4s. The most common value is 4, so the mode is 4.

Advantages:

- Not sensitive to outliers or the shape of the distribution
- o Returns a typical value

Disadvantages:

- Not all data sets have a mode
 - What is the mode of {1,2,3,4,5}?
- Computationally intensive
- The mode can be significantly different from the mean or median for a highly skewed distribution

Standard Deviation

The **standard deviation** of a distribution is a measure of the variation in the data set.

$$\sigma^2 = 1 / (N-1) \sum_{i=1,N} (\langle x_i^2 \rangle - \langle x \rangle^2)$$

Source Detection

GRB 050416A
Nordic Optical Telescope
DFOSC — 300 s — I band

- Moderately crowded field
- o No large background gradient
- More faint sources than bright ones
- Most sources are point sources

How to tell the sources from the noise?

- Easy by eye for bright sources
- Hard by eye for faint sources
- Need an automated process

Background Fluctuations

- Faint sources
- Noise

Sources of Noise

- o Poisson noise
 - Intrinsic to photon counting statistics
 - o Mean noise = sqrt(signal)
 - Observed counts = signal + noise
- Sky Noise
 - Poisson noise in the background
- Read-Out Noise
 - Noise from detector electronics
- o Flat-Field Variance
 - Variance due to pixel-to-pixel variations in detector sensitivity
 - \circ Typically about 1%–2%.

Measure the Background

- Estimate the background
- o Pick a region with no sources

- Pick a statistics
 - o Mean
 - can be biased by faint, undetected sources
 - Median
 - usually reliable
 - computationally expensive
 - o Mode
 - Usually reliable
 - Computational tricks exist
 - Mode is often used
- o Background is usually determined locally
 - Compensates for variable background
- o Measure the standard deviation in the sky.
- Automated methods

Filter the Image

- Want to find astrophysical sources, not noise spikes
- Smooth the image with a matched filter to reduce noise.
- Atmospheric seeing, and the optics, cause photons from a point source, such as a star, to be spread over several pixels on a detector. This is called **the point-spread function**.
- In our example the width of the point-spread function is 1.2 arcseconds.
 - Angular size of Solar mass star at 10 pc:
 0.001 arcsec
 - o Diffraction limit: 0.08 arcsec
 - o Pixel scale: 0.39 arcsec
- CCD point-spread functions are roughly Gaussian (to a first approximation)
- Pick a filter that matches the point sources in the image.
- Smooth the image
- Any source smaller than the point-spread function will be smoothed over.
- Point sources and extended sources will still be present.

Detect Sources

- Scan the smoothed image and look for pixels that are > *N*-sigma brighter than the background.
- *N* is the detection threshold

 For a Gaussian distribution of noise (typical for a CCD)

<i>N</i> -sigma	Chance of False Detection	
1	31.7%	
2	4.6%	
3	0.3%	

- One way to further reduce the probability of a chance detection is to require that there be at least *M* adjacent pixels that are above the detection threshold for each source.
- \circ For M = 5 this would be a detection

0	0	0	
	X	O	
	0		

o And this would not.

O			
	X	0	
	0		

Example of Detected Sources

- a. This is a star.
- b. This is two stars that are blended. The point-spread functions of the two stars overlap.
- c. This is a galaxy that is slightly larger than the point-spread function. It is only barely resolved.
- d. This is either a noise spike, or a cosmic ray.
- e. This is a bad (cold) pixel.